

(12) United States Patent

Blanchard et al.

(10) **Patent No.:**

US 9,237,836 B2

(45) **Date of Patent:**

Jan. 19, 2016

(54) ROTATING FILTER FOR A DISHWASHER

(75) Inventors: Walter T. Blanchard, Saint Joseph, MI (US); Jacquelyn R. Geda, Saint Joseph, MI (US); Todd M. Jozwiak, Benton Harbor, MI (US); John A. Miller, Stevensville, MI (US); Antony M. Rappette, Benton Harbor, MI (US); Rodney M. Welch, Eau Claire, MI (US)

(73) Assignee: Whirlpool Corporation, Benton Harbor,

MI (US)

Notice: Subject to any disclaimer, the term of this

> patent is extended or adjusted under 35 U.S.C. 154(b) by 835 days.

Appl. No.: 13/483,254

(22)Filed: May 30, 2012

Prior Publication Data (65)

US 2013/0319485 A1 Dec. 5, 2013

(51) Int. Cl. A47L 15/42 (2006.01)

U.S. Cl. CPC A47L 15/4206 (2013.01); A47L 15/4208 (2013.01); A47L 15/4219 (2013.01)

(58) Field of Classification Search

CPC A47L 15/4206; A47L 15/4219; A47L 15/4208; A47L 15/42 See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

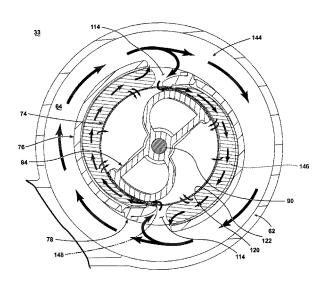
1,617,021 A	2/1927	Mitchell
2,154,559 A	4/1939	Bilde
2,422,022 A	6/1947	Koertge

2,734,122 A	2/1956	Flannery
3,016,147 A	1/1962	Cobb et al.
3,026,628 A	3/1962	Berger, Sr. et al.
3,068,877 A	12/1962	Jacobs
3,103,227 A	9/1963	Long
3,122,148 A	2/1964	Alabaster
3,186,417 A	6/1965	Fay
3,288,154 A	11/1966	Jacobs
3,542,594 A	11/1970	Smith et al.
3,575,185 A	4/1971	Barbulesco
3,586,011 A	6/1971	Mazza
3,739,145 A	6/1973	Woehler
3,801,280 A	4/1974	Shah et al.
3,846,321 A	11/1974	Strange
3,906,967 A	9/1975	Bergeson
3,989,054 A	11/1976	Mercer
4,179,307 A	12/1979	Cau et al.
4,180,095 A	12/1979	Woolley et al.
4,228,962 A	10/1980	Dingler et al.
4,326,552 A	4/1982	Bleckmann
	(Con	tinued)

FOREIGN PATENT DOCUMENTS

CH	169630	6/1934
CN	2571812	9/2003
	(Cor	ntinued)

OTHER PUBLICATIONS


German Search Report for DE102010061347, Jan. 23, 2013. (Continued)

Primary Examiner — Michael Barr Assistant Examiner — Rita Adhlakha

ABSTRACT

A dishwasher with a tub at least partially defining a washing chamber, a liquid spraying system, a liquid recirculation system defining a recirculation flow path, and a liquid filtering system. The liquid filtering system includes a rotating filter disposed in the recirculation flow path to filter the liquid.

15 Claims, 6 Drawing Sheets

US 9,237,836 B2Page 2

(56)	Referen	ces Cited		2008/0116 2008/0289			Rieger et al. Kim et al.
U.S.	PATENT	DOCUMENTS		2008/0289			Rockwell et al.
				2009/0095			Iwanaga et al.
4,754,770 A		Fornasari		2009/0283 2010/0012			Classen et al. Verma et al.
5,002,890 A 5,030,357 A	3/1991 7/1991	Morrison Lowe		2010/0043			Bertsch et al.
5,133,863 A		Zander		2010/0043			Choi et al.
5,331,986 A		Lim et al.		2010/0043			Yoon et al. Heisele et al.
5,454,298 A 5,470,142 A	10/1995	Lu Sargeant et al.		2010/0121 2010/0154			Lau et al.
5,470,472 A		Baird et al.		2010/0154	1841 A1	6/2010	Fountain et al.
5,557,704 A		Dennis et al.		2010/0224 2010/0252			Kehl et al. Classen et al.
5,569,383 A		Vander Ark, Jr. et al. Nagaoka		2010/0232			Han et al.
5,618,424 A 5,630,437 A *		Dries et al	134/186	2011/0061	682 A1	3/2011	Fountain et al.
5,711,325 A		Kloss et al.		2011/0120			Yoon et al.
5,755,244 A 5,782,112 A		Sargeant et al. White et al.		2011/0126 2011/0146			Yoon et al. Fountain et al.
5,803,100 A	9/1998	Thies		2011/0146		6/2011	
5,865,997 A	2/1999	Isaacs		2011/0146			Fountain et al.
5,868,937 A		Back et al.		2012/0097 2012/0118			Fountain Tuller et al.
5,904,163 A 5,924,432 A	5/1999 7/1999	Inoue et al. Thies et al.		2012/0118		5/2012	
6,289,908 B1	9/2001	Kelsey		2012/0138			Tuller et al.
6,389,908 B1	5/2002 10/2002	Chevalier et al.		2012/0138 2012/0138			Fountain et al. Fountain et al.
6,460,555 B1 6,491,049 B1	10/2002	Tuller et al. Tuller et al.		2012/0291			Tuller et al.
6,601,593 B2	8/2003			2012/0291			Tuller et al.
6,666,976 B2		Benenson, Jr. et al.		2012/0318 2012/0318			Delgado et al. Fountain et al.
6,800,197 B1 6,997,195 B2		Kosola et al. Durazzani et al.		2012/0318			Fountain et al.
7,047,986 B2		Ertle et al.		2012/0318			Tuller et al.
7,069,181 B2		Jerg et al.					
7,093,604 B2 7,153,817 B2	8/2006 12/2006	Jung et al. Binder			FOREIG	IN PATE	NT DOCUMENTS
7,198,054 B2	4/2007			CN	276	1660	3/2006
7,208,080 B2		Batten et al.		CN		6129	5/2007
7,232,494 B2 7,250,174 B2		Rappette Lee et al.		CN		7830	6/2007
7,270,132 B2		Inui et al.		CN CN	10140e 20127e		4/2009 7/2009
7,319,841 B2		Bateman, III et al.		CN	20136		12/2009
7,326,338 B2 7,347,212 B2		Batten et al. Rosenbauer		CN	10165		2/2010
7,350,527 B2	4/2008	Gurubatham et al.		CN CN	201410 20147:		2/2010 5/2010
7,363,093 B2		King et al.		DE		4489	8/1961
7,406,843 B2 7,445,013 B2	8/2008 11/2008	Thies et al. VanderRoest et al.		DE		8358 A1	11/1968
7,497,222 B2		Edwards et al.		DE DE		3070 5474	3/1969 8/1971
7,523,758 B2		VanderRoest et al.		DE		7309 U	9/1973
7,594,513 B2 7,819,983 B2		VanderRoest et al. Kim et al.		DE		5242 A1	1/1979
7,896,977 B2		Gillum et al.		DE DE		7369 A1 3721 A1	4/1985 5/1988
8,043,437 B1		Delgado et al.		DE		2997 A1	7/1990
8,161,986 B2 8,215,322 B2		Alessandrelli Fountain et al.		DE		1834 A1	10/1991
8,667,974 B2	3/2014	Fountain et al.		DE DE		6915 A1 1914 A1	11/1991 4/1993
8,746,261 B2	6/2014		124/25.2	DE		5486 U1	11/1994
9,005,369 B2 * 2002/0017483 A1		Delgado et al	134/23.2	DE		6710 U1	1/1995
2003/0037809 A1	2/2003	Favaro		DE DE		3432 C1 8523 A1	8/1995 11/1995
2003/0205248 A1 2004/0007253 A1	11/2003	Christman et al. Jung et al.		DE	443	3842	3/1996
2004/0007233 A1 2004/0103926 A1	6/2004			DE DE		1365 T2	3/1996 6/1997
2005/0022849 A1		Park et al.		DE DE		6965 A1 3957 T2	1/1998
2005/0133070 A1 2006/0005863 A1	6/2005 1/2006	Vanderroest et al. Gurubatham et al.		DE	1965	2235	6/1998
2006/00054549 A1	3/2006			DE		0772 A1	7/2000
2006/0123563 A1	6/2006	Raney et al.		DE DE		5965 T2 1838 A1	8/2000 5/2001
2006/0162744 A1	7/2006	Walkden Hedstrom et al.		DE	1006	5571 A1	7/2002
2006/0174915 A1 2006/0236556 A1		Ferguson et al.		DE DE		6514 A1	8/2002
2006/0237049 A1	10/2006	Weaver et al.		DE DE	6020	6490 T2 2143	5/2006 8/2006
2007/0006898 A1	1/2007			DE	10200502	3428 A1	11/2006
2007/0107753 A1 2007/0163626 A1	5/2007 7/2007			DE	10200503		2/2007
2007/0183828 AT 2007/0186964 AT	8/2007			DE DE	10200700° 10200706		8/2008 6/2009
2007/0246078 A1	10/2007	Purtilo et al.		DE	20201000	6739 U1	8/2010
2007/0266587 A1	11/2007	Bringewatt et al.		DE	10200902	7910 A1	1/2011

US 9,237,836 B2

Page 3

(56)	References Cited	JP 60069375 A 4/1985
	EODELON DATES TO DOCUMENTO	JP 61085991 A 5/1986
	FOREIGN PATENT DOCUMENTS	JP 61200824 9/1986 JP 1005521 A 1/1989
DE	102000020270 11 2/2011	JP 1080331 A 3/1989
DE DE	102009028278 A1 2/2011 102010061215 A1 6/2011	JP 5245094 A 9/1993
DE	102010061213 A1 6/2011 102011052846 A1 5/2012	JP 07178030 7/1995
DE	102011032840 A1 3/2012 102012103435 A1 12/2012	JP 10109007 A 4/1998
EP	0068974 A1 1/1983	JP 2000107114 A 4/2000
EP	0178202 A1 4/1986	JP 2001190479 A 7/2001
EP	0198496 A1 10/1986	JP 2001190480 A 7/2001
EP	0208900 A2 1/1987	JP 2003336909 A 12/2003 JP 2003339607 A 12/2003
EP	0370552 A1 5/1990	JP 2003339607 A 12/2003 JP 2004267507 A 9/2004
EP	0374616 A1 6/1990	JP 2005124979 A 5/2005
EP EP	0383028 A2 8/1990 0405627 A1 1/1991	JP 2006075635 A 3/2006
EP	437189 A1 7/1991	JP 2007068601 A 3/2007
EP	0454640 A1 10/1991	JP 2008093196 A 4/2008
EP	0521815 A1 1/1993	JP 2008253543 A 10/2008
EP	0585905 A2 9/1993	JP 2008264018 A 11/2008
EP	0702928 A1 8/1995	JP 2008264724 A 11/2008
EP	0597907 B1 12/1995	JP 2010035745 A 2/2010 JP 2010187796 A 9/2010
EP	0725182 A1 8/1996	KR 20010077128 8/2001
EP EP	0748607 A2 12/1996 752231 A1 1/1997	KR 20090006659 1/2009
EP	0752231 A1 1/1997	WO 2005058124 A1 6/2005
EP	0854311 A2 7/1998	WO 2005115216 A1 12/2005
EP	0855165 A2 7/1998	WO 2007024491 A2 3/2007
EP	0898928 A1 3/1999	WO 2007074024 A1 7/2007
EP	1029965 A1 8/2000	WO 2008067898 A1 6/2008
EP	1224902 A2 7/2002	WO 2008125482 10/2008 WO 2009018903 A1 2/2009
EP	1256308 A2 11/2002	WO 2009018903 A1 2/2009 WO 2009065696 A1 5/2009
EP EP	1264570 12/2002 1319360 A1 6/2003	WO 2009077266 A1 6/2009
EP EP	1342827 9/2003	WO 2009077279 A2 6/2009
EP	1346680 A2 9/2003	WO 2009077280 A1 6/2009
EP	1386575 A1 2/2004	WO 2009077283 A1 6/2009
EP	1415587 5/2004	WO 2009077286 A1 6/2009
EP	1498065 A1 1/2005	WO 2009077290 A1 6/2009
EP	1583455 A1 10/2005	WO 2009118308 A1 10/2009
EP	1703834 A1 9/2006	OTHER PUBLICATIONS
EP EP	1743871 A1 1/2007 1862104 A1 12/2007	
EP	1882436 A1 1/2008	German Search Report for DE102010061215, Feb. 7, 2013.
EP	1980193 A1 10/2008	German Search Report for Counterpart DE102013109125, Dec. 9,
EP	2127587 A1 2/2009	2013.
\mathbf{EP}	2075366 A1 7/2009	Ishihara et al., JP 11155792 A, English Machine Translation, 1999,
EP	2138087 A1 12/2009	pp. 1-14.
EP	2332457 A1 6/2011	German Search Report for Counterpart DE102014101260.7, Sep. 18,
EP	2335547 A1 6/2011	2014.
EP EP	2338400 A1 6/2011 2351507 A1 8/2011	European Search Report for EP11188106, Mar. 29, 2012.
FR	1370521 A 8/1964	German Search Report for DE102010061346, Sep. 30, 2011.
FR	2372363 A1 6/1978	German Search Report for DE102010061343, Jul. 7, 2011.
FR	2491320 A1 4/1982	German Search Report for DE1020100515 15, 3di. 1, 2011.
FR	2491321 A1 4/1982	German Search Report for DE102011053000, Oct. 21, 2011.
FR	2790013 A1 8/2000	European Search Report for EP101952380, May 19, 2011.
GB	973859 A 10/1964	European Search Report for EP12188007, Aug. 6, 2013.
GB	1047948 11/1966	German Search Report for DE102013103264, Jul. 12, 2013.
GB GB	1123789 A 8/1968 1515095 6/1978	German Search Report for DE102013103625, Jul. 19, 2013.
GB	2274772 A 8/1994	
JP	55039215 A 3/1980	* cited by examiner
		•

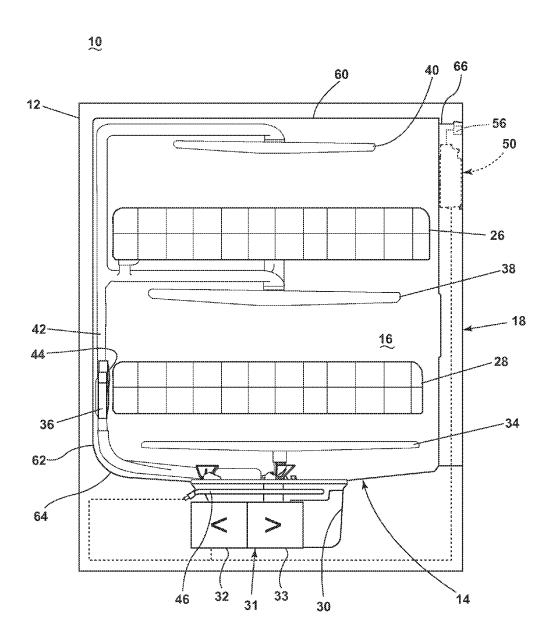


FIG. 1

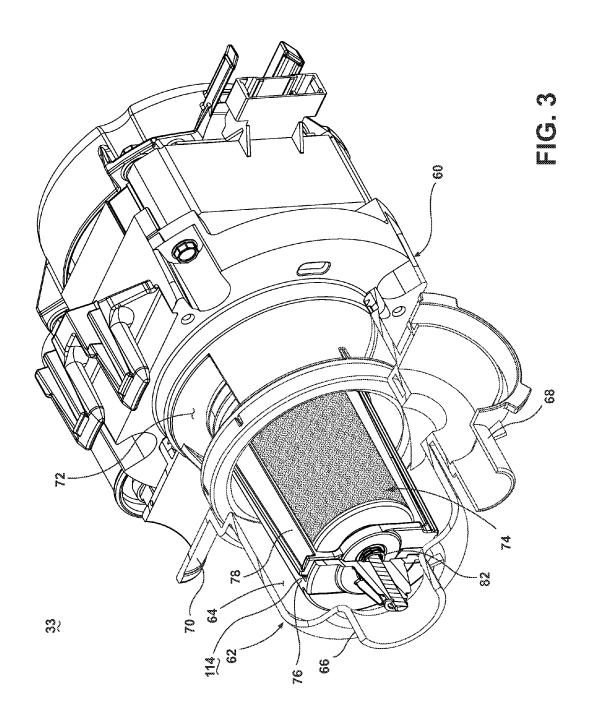
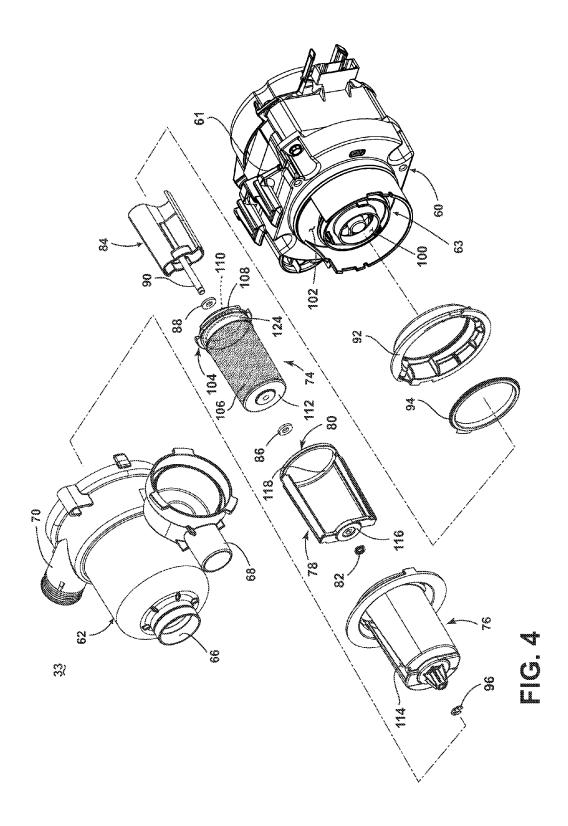
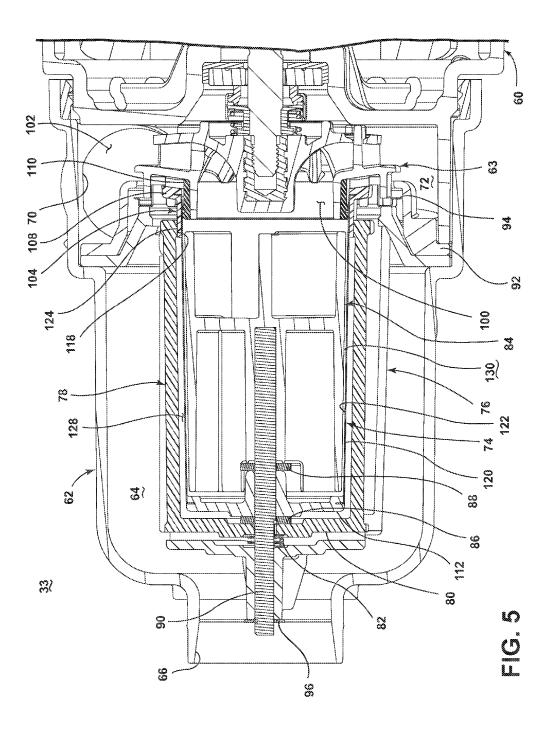
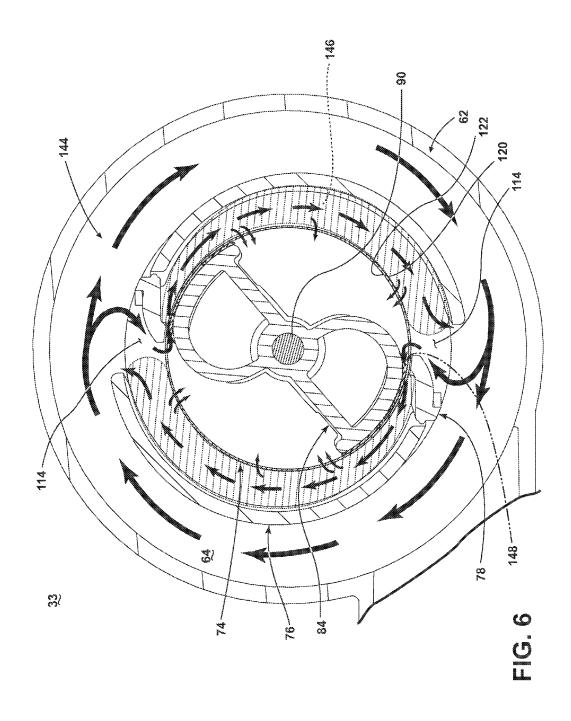






FIG. 2

1

ROTATING FILTER FOR A DISHWASHER

BACKGROUND OF THE INVENTION

A dishwasher is a domestic appliance into which dishes 5 and other cooking and eating wares (e.g., plates, bowls, glasses, flatware, pots, pans, bowls, etc.) are placed to be washed. The dishwasher may include a filter system to remove soils from liquid circulated onto the dishes.

BRIEF DESCRIPTION OF THE INVENTION

In one embodiment, a dishwasher for treating dishes according to at least one automatic cycle of operation includes a tub at least partially defining a treating chamber, a sprayer proximate to the tub to spray liquid into the treating chamber, a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit, a rotating filter located within the circulation circuit such that the circulated liquid passes through the filter from an upstream surface to a downstream surface, a diverter extending along and spaced away from at least a portion of at least one of the upstream and downstream surfaces to define a gap between the diverter and the filter, and a diverter mount operably coupling the diverter to the filter such that there is only one 25 tolerance stack up between at least one portion of the diverter and one portion of the filter that effects the gap.

In another embodiment, a dishwasher for treating dishes according to at least one cycle of operation includes a tub at least partially defining a treating chamber, a sprayer proximate to the tub to spray liquid into the treating chamber, a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit for circulating the sprayed liquid from the treating chamber to the sprayer, a rotating filter located within the circulation circuit such that 35 the circulated liquid passes through the filter from an upstream surface to a downstream surface as the filter rotates, and a first diverter extending along and positioned away from at least a portion of at least one of the upstream and downstream surfaces to define a gap, with at least a first portion of the first diverter in a floating relative relationship with the filter.

In yet another embodiment, a dishwasher for treating dishes according to at least one cycle of operation includes a tub at least partially defining a treating chamber, a sprayer 45 proximate to the tub to spray liquid into the treating chamber, a pump fluidly coupled between the treating chamber and the sprayer to define a circulation circuit for circulating the sprayed liquid from the treating chamber to the sprayer, a rotating filter comprising a frame supporting a screen, with 50 the frame having at least one filter bearing surface extending beyond the screen, and the filter located within the circulation circuit such that the circulated liquid passes through the screen from an upstream surface to a downstream surface as the filter rotates, a first diverter extending along at least a 55 portion of one of the upstream and downstream surfaces, and having a diverter bearing surface, and a biasing device relatively biasing the rotating filter and the first diverter such that the filter bearing surface and the diverter bearing surface contact.

In another embodiment, a dishwasher for treating dishes according to at least one cycle of operation includes a tub at least partially defining a treating chamber, a sprayer proximate to the tub to spray liquid into the treating chamber, a pump fluidly coupled between the treating chamber and the 65 sprayer to define a circulation circuit, a rotating filter comprising a body in which are provided a plurality of openings,

2

and the filter located within the circulation circuit such that the circulated liquid passes through the screen from an upstream surface to a downstream surface as the filter rotates, and a first diverter extending along at least a portion of one of the upstream and downstream surfaces, and having a diverter bearing surface.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is a schematic, cross-sectional view of a dishwasher according to a first embodiment of the invention.

FIG. ${\bf 2}$ is a schematic view of a controller of the dishwasher of FIG. ${\bf 1}$.

FIG. 3 is a perspective view of an embodiment of a pump and filter assembly of the dishwasher of FIG. 1 with portions cut away for clarity.

FIG. **4** is an exploded view of the pump and filter assembly of FIG. **2**.

FIG. 5 is a cross-sectional view of the pump and filter assembly of FIG. 2 taken along the line 5-5 shown in FIG. 3.

FIG. 6 is a cross-sectional elevation view of a portion of the pump and filter assembly of FIG. 3.

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In FIG. 1, an automated dishwasher 10 according to a first embodiment is illustrated. The dishwasher 10 shares many features of a conventional automated dishwasher, which will not be described in detail herein except as necessary for a complete understanding of the invention. A chassis 12 may define an interior of the dishwasher 10 and may include a frame, with or without panels mounted to the frame. An open-faced tub 14 may be provided within the chassis 12 and may at least partially define a treating chamber 16, having an open face, for washing dishes. A door assembly 18 may be movably mounted to the dishwasher 10 for movement between opened and closed positions to selectively open and close the open face of the tub 14. Thus, the door assembly provides accessibility to the treating chamber 16 for the loading and unloading of dishes or other washable items.

It should be appreciated that the door assembly 18 may be secured to the lower front edge of the chassis 12 or to the lower front edge of the tub 14 via a hinge assembly (not shown) configured to pivot the door assembly 18. When the door assembly 18 is closed, user access to the treating chamber 16 may be prevented, whereas user access to the treating chamber 16 may be permitted when the door assembly 18 is open.

Dish holders, illustrated in the form of upper and lower dish racks 26, 28, are located within the treating chamber 16 and receive dishes for washing. The upper and lower racks 26, 28 are typically mounted for slidable movement in and out of the treating chamber 16 for ease of loading and unloading. Other dish holders may be provided, such as a silverware basket. As used in this description, the term "dish(es)" is intended to be generic to any item, single or plural, that may be treated in the dishwasher 10, including, without limitation, dishes, plates, pots, bowls, pans, glassware, and silverware.

A spray system is provided for spraying liquid in the treating chamber 16 and includes sprayers provided in the form of a first lower spray assembly 34, a second lower spray assembly 36, a rotating mid-level spray arm assembly 38, and/or an upper spray arm assembly 40, which are proximate to the tub 14 to spray liquid into the treating chamber 16. Upper spray arm assembly 40, mid-level spray arm assembly 38 and lower

spray assembly **34** are located, respectively, above the upper rack **26**, beneath the upper rack **26**, and beneath the lower rack **24** and are illustrated as rotating spray arms. The second lower spray assembly **36** is illustrated as being located adjacent the lower dish rack **28** toward the rear of the treating 5 chamber **16**. The second lower spray assembly **36** is illustrated as including a vertically oriented distribution header or spray manifold **44**. Such a spray manifold is set forth in detail in U.S. Pat. No. 7,594,513, issued Sep. 29, 2009, and titled "Multiple Wash Zone Dishwasher," which is incorporated 10 herein by reference in its entirety.

A recirculation system is provided for recirculating liquid from the treating chamber 16 to the spray system. The recirculation system may include a sump 30 and a pump assembly 31. The sump 30 collects the liquid sprayed in the treating 15 chamber 16 and may be formed by a sloped or recessed portion of a bottom wall of the tub 14. The pump assembly 31 may include both a drain pump assembly 32 and a recirculation pump assembly 33. The drain pump assembly 32 may draw liquid from the sump 30 and pump the liquid out of the 20 dishwasher 10 to a household drain line (not shown). The recirculation pump assembly 33 may be fluidly coupled between the treating chamber 16 and the spray system to define a circulation circuit for circulating the sprayed liquid. More specifically, the recirculation pump assembly 33 may 25 draw liquid from the sump 30 and the liquid may be simultaneously or selectively pumped through a supply tube 42 to each of the assemblies 34, 36, 38, 40 for selective spraying. While not shown, a liquid supply system may include a water supply conduit coupled with a household water supply for 30 supplying water to the treating chamber 16.

A heating system including a heater 46 may be located within the sump 30 for heating the liquid contained in the sump 30

A controller **50** may also be included in the dishwasher **10**, 35 which may be operably coupled with various components of the dishwasher **10** to implement a cycle of operation. The controller **50** may be located within the door **18** as illustrated, or it may alternatively be located somewhere within the chassis **12**. The controller **50** may also be operably coupled with a 40 control panel or user interface **56** for receiving user-selected inputs and communicating information to the user. The user interface **56** may include operational controls such as dials, lights, switches, and displays enabling a user to input commands, such as a cycle of operation, to the controller **50** and 45 receive information.

As illustrated schematically in FIG. 2, the controller 50 may be coupled with the heater 46 for heating the wash liquid during a cycle of operation, the drain pump assembly 32 for draining liquid from the treating chamber 16, and the recir- 50 culation pump assembly 33 for recirculating the wash liquid during the cycle of operation. The controller 50 may be provided with a memory 52 and a central processing unit (CPU) 54. The memory 52 may be used for storing control software that may be executed by the CPU 54 in completing a cycle of 55 operation using the dishwasher 10 and any additional software. For example, the memory 52 may store one or more pre-programmed cycles of operation that may be selected by a user and completed by the dishwasher 10. The controller 50 may also receive input from one or more sensors 58. Non- 60 limiting examples of sensors that may be communicably coupled with the controller 50 include a temperature sensor and turbidity sensor to determine the soil load associated with a selected grouping of dishes, such as the dishes associated with a particular area of the treating chamber.

Referring now to FIG. 3, the recirculation pump assembly 33 is shown removed from the dishwasher 10. The recircula-

4

tion pump assembly 33 includes a recirculation pump 60 that is secured to a housing 62, which is shown partially cutaway for clarity. The housing 62 defines a filter chamber 64 that extends the length of the housing 62 and includes an inlet port 66, a drain outlet port 68, and a recirculation outlet port 70. The inlet port 66 is configured to be coupled to a fluid hose (not shown) extending from the sump 30. The filter chamber 64, depending on the location of the recirculation pump assembly 33, may functionally be part of the sump 30 or replace the sump 30. The drain outlet port 68 for the recirculation pump 60, which may also be considered the drain pump inlet port, may be coupled to the drain pump assembly 32 such that actuation of the drain pump assembly 32 drains the liquid and any foreign objects within the filter chamber 64. The recirculation outlet port 70 is configured to receive a fluid hose (not shown) such that the recirculation outlet port 70 may be fluidly coupled to the liquid spraying system including the assemblies 34, 36, 38, 40. The recirculation outlet port 70 is fluidly coupled to an impeller chamber 72 of the recirculation pump 60 such that when the recirculation pump 60 is operated liquid may be supplied to each of the assemblies 34, 36, 38, 40 for selective spraying. In this manner, the recirculation pump 60 includes an inlet fluidly coupled to the tub 14 and an outlet fluidly coupled to the liquid spraying system to recirculate liquid from the tub 14 to the treating chamber 16.

A liquid filtering system may be included within the recirculation pump assembly 33 and is illustrated as including a rotating filter 74, a shroud 76, and a first diverter 78. FIG. 4 more clearly illustrates that the recirculation pump assembly 33 may also include a diverter mount 80, a biasing element 82, a second diverter 84, a first bearing 86, a second bearing 88, a shaft 90, a separator ring 92, a floating ring 94, and a clip 96.

FIG. 4 also more clearly illustrates that the recirculation pump assembly 33 may also include a recirculation pump 60 having a motor 61 and an impeller 63, which may be rotatably driven by the motor 61. The pump 60 includes an inlet 100 and an outlet 102, both which are in fluid communication with the circulation circuit. The inlet 100 of the pump 60 may have an area of 660 to 810 mm² and the outlet 102 of the pump 60 may have an area of 450 to 500 mm². The recirculation pump 60 may also have an exemplary volumetric flow rate and the rate may be in the range of 15 liters per minute to 32 liters per minute. The motor 61 may be a variable speed motor having speeds ranging from between 2000 and 3500 rpm. Alternatively, the motor 61 may include a single speed motor having any suitable speed; for example, the motor 61 may have a speed of 3370 rpm+/-50 rpm. The general details of such a recirculation pump assembly 33 are described in the commonly-owned patent application entitled, Rotating Filter for a Dishwashing Machine, filed Jun. 20, 2011, and assigned U.S. application Ser. No. 13/163,945, which is incorporated by reference herein. The rotating filter 74 may be operably coupled to the impeller 63 such that rotation of the impeller 63 effects the rotation of the rotating filter **74**.

The rotating filter 74 may include a hollow body formed by a frame 104 and a screen 106 and may have an exterior and an interior. The hollow body of the rotating filter 74 may be any suitable shape including that of a cone or a cylinder. The frame 104 is illustrated as including a first ring 108, a second ring 110, and an end portion 112. The screen 106 is supported by the frame 104 and the position of the screen 106 may be fixed relative to the frame 104. In the illustrated embodiment, the screen 106 is held between the first and second rings 108 and 110 of the frame 104. The first ring 108 extends beyond the screen 106 of the rotating filter 74 and includes a projection extending about a periphery of the hollow body of the screen 106.

The screen 106 may include a plurality of openings through which liquid may pass. The plurality of openings may have a variety of sizes and spacing. The sum of the individual areas of the plurality of openings within the screen **106** may define a cumulative open area for the body of the 5 screen 106. The area of the body of the screen 106 exposed to the circulation circuit may define the body area of the screen 106. It is contemplated that the ratio of the open area to the body area of the screen 106 may be in the range of 0.15 to 0.40. The ratio may be a function of at least the area of one of the inlet 100 of the pump 60 and the outlet 102 of the pump 60. The pump 60 may also have a volumetric flow rate and the ratio of the open area to the body area of the screen 106 may be a function of the volumetric flow rate. The ratio of the open area to the body area of the screen 106 may also be a function 15 of the rotational speed of the rotating filter 74 during operation. For example, the ratio being within the range of 0.15 to 0.40 may correlate to a rotational speed of the rotating filter 74 being between 2000 and 3500 rpm. In one embodiment the rotating filter 74 may include 0.160 mm diameter holes and 20 about eighteen percent open area. Reducing the open area to twelve percent may reduce the motor wattage without lowering the pump pressure and the resulting rotating filter 74 may handle soils equally as well.

The shroud **76** may define an interior and may be sized to 25 at least partially enclose the rotating filter **74**. The shroud **76** may be fluidly accessible through multiple access openings **114**. It is contemplated that the shroud **76** may include any number of access openings **114** including a singular access opening **114**.

The first diverter **78** may be sized to extend along at least a portion of the rotating filter **74**. The diverter mount **80** may be operably coupled to the first diverter **78** including that it may be formed as a single piece with the first diverter **78**. The diverter mount **80** may include a first mount **116** and a diverter 35 bearing surface **118**. The first diverter **78** may extend between the first mount **116** and the diverter bearing surface **118**.

As shown in FIG. 5, when assembled, the first bearing 86 may be mounted in an end of the rotating filter 74 and may rotatably receive the stationary shaft 90, which in turn may be 40 mounted to an end of the shroud 76 through a retainer, such as the spring clip 96. The clip 96 may retain the shroud 76 on the stationary shaft 90 such that it does not slide or rotate. The first mount 116 of the diverter mount 80 may also be supported by the shaft 90 between the bearing 86 and the biasing 45 element 82 and is configured to extend along a portion of the screen 106. The first diverter 78 and the diverter mount 80 are arranged such that the first diverter 78 may be located within the access opening 114 of the shroud 76. In the illustrated embodiment, the first diverter 78 projects through the access 50 opening 114.

The second bearing **88** may be adjacent an inside portion of the rotating filter **74** and may rotatably receive the stationary shaft **90**. The second bearing **88** may also separate the rotating filter **74** from the second diverter **84**, which may also be 55 mounted on the stationary shaft **90**. In this way, the rotating filter **74** may be rotatably mounted to the stationary shaft **90** with the first bearing **86** and the second bearing **88** and the shroud **76**, first diverter **78**, and second diverter **84** may be stationary with the shaft **90**.

The shroud 76 may be mounted at its other end to the separator ring 92. The separator ring 92 acts to separate the filtered water in the impeller chamber 72 from the mixture of liquid and soils in the filter chamber 64. The separator ring 92 may be located between the floating ring 94 and the recirculation pump 60 and may be axially moveable to aid in radially and vertically sealing with the separator ring 92.

6

The screen 106 may have a first surface 120 defining an upstream surface and a second surface 122 defining a downstream surface. The rotating filter 74 may be located within the circulation circuit such that the circulated liquid passes through the rotating filter 74 from the upstream surface defined by the first surface 120 to a downstream surface defined by the second surface 122. In this manner, recirculating liquid passes through the rotating filter 74 from the upstream surface to the downstream surface to effect a filtering of the liquid. In the described flow direction, the upstream surface correlates to the outer of first surface 120 of the rotating filter 74 and the downstream surface correlates to the inner or second surface 122 of the rotating filter 74 such that the rotating filter 74 separates the upstream portion of the filter chamber 64 from the outlet port 70. If the flow direction is reversed, the downstream surface may correlate with the outer of first surface 120 and the upstream surface may correlate with the inner or second surface 122.

The first diverter 78 may extend along and be spaced away from at least a portion of the upstream surface to define a gap 128 between the first diverter 78 and the rotating filter 74 with a first portion of the first diverter 78 being proximate the impeller 63 and the second portion of the first diverter 78 being distal the impeller 63. A filter bearing surface 124 is provided on the frame 104, which, as illustrated is an integral part of the frame 104, though it need not be. At least part of the frame 104 may form a filter bearing surface 124. In the illustrated example, the filter bearing surface 124 includes the first ring 108. More specifically, a portion of the first ring 108 projecting beyond the screen 106 forms the filter bearing surface 124. When assembled, the diverter bearing surface 118 and the filter bearing surface 124 are in an abutting relationship to define a floating relative relationship between the first diverter 78 and the rotating filter 74. The rotating filter 74 and first diverter 78 are arranged such that when the filter bearing surface 124 and diverter bearing surface 118 are in contact, the first diverter 78 is spaced from the screen 106 to form the gap 128 between the first diverter 78 and the screen 106. The gap 128 may be in a range of 0.25 mm to 1 mm and is preferably around 0.5 mm. In the illustrated embodiment, the internal or second diverter 84 may be proximate the downstream surface to define a second gap 130. The gap 130 may be in a range of 0.5 mm to 2 mm and is preferably around 0.75 mm. Thus, the first diverter 78 may be proximate the exterior of the rotating filter 74 and the second diverter 84 may be proximate the interior of the rotating filter 74.

In the illustrated embodiment, the hollow body of the rotating filter 74 is cone shaped and the first diverter 78 is positioned such that the gap 128 is substantially constant relative to the rotating filter 74. The diverter mount 80 may operably couple the first diverter 78 to the rotating filter 74 such that there is only one tolerance stack up between at least a portion of the first diverter 78 and a portion of the rotating filter 74. More specifically, the diverter bearing surface 118 and the filter bearing surface 124 are in contact during rotation of the rotating filter 74 to form the one tolerance stack up.

The biasing element **82** may bias the first diverter **78** into position relative to the rotating filter **74** to form the gap **128**. The biasing element **82** may bias the first diverter **78** and the rotating filter **74** into a fixed relative axial position, which may be of particular importance when the rotating filter **74** is a cone with a varying diameter and of less importance if the rotating filter **74** and first diverter **78** are of constant diameter, such as a cylinder. More specifically the biasing element **82** may bias the second portion of the first diverter **78** toward an end of the rotating filter **74** proximate the first ring **108** to maintain the first diverter **78** and the rotating filter **74** in the

fixed relative position. In the illustrated example, the biasing element biases both of the first diverter and the rotating filter 74 toward the impeller 63. The biasing element 82 may be any suitable biasing element 82 including a compression spring. The biasing element 82 may also bias the rotating filter 74 and 5 the first diverter 78 such that the filter bearing surface 124 and the diverter bearing surface 118 contact each other to form the one tolerance stack up. In the event that the assembly does not include the diverter mount, the biasing element 82 and the first diverter 78 may be configured such that the biasing element 82 may bias the first diverter 78, itself, toward a first end of the rotating filter 74 to maintain the first diverter 78 and rotating filter 74 in a fixed relative position.

In operation, wash liquid, such as water and/or treating chemistry (i.e., water and/or detergents, enzymes, surfactants, and other cleaning or conditioning chemistry), enters the tub 14 and flows into the sump 30 to the inlet port 66 where the liquid may enter the filter chamber 64. As the filter chamber 64 fills, liquid passes through the perforations in the rotating filter 74. After the filter chamber 64 is completely 20 filled and the sump 30 is partially filled with liquid, the dishwasher 10 activates the motor 61. During an operation cycle, a mixture of liquid and foreign objects such as soil particles may advance from the sump 30 into the filter chamber 64 to fill the filter chamber 64.

Activation of the motor 61 causes the impeller 63 and the rotating filter 74 to rotate. The liquid in the recirculation flow path flows into the filter chamber 64 from the inlet port 66. The rotation of the filter 74 causes the liquid and soils therein to rotate in the same direction within the filter chamber 64. 30 The recirculation flow path may circumscribe at least a portion of the shroud 76 and enters through access openings 114 therein. The rotation of the impeller 63 draws liquid from the filter chamber 64 and forces the liquid by rotation of the impeller 63 outward such that it is advanced out of the impel- 35 ler chamber 72 through the recirculation outlet port 70 to the assemblies 34, 36, 38, 40 for selective spraying. When liquid is delivered to the assemblies 34, 36, 38, 40, it is expelled from the assemblies 34, 36, 38, 40 onto any dishes positioned in the treating chamber 16. Liquid removes soil particles 40 located on the dishes, and the mixture of liquid and soil particles falls onto the bottom wall of the tub 14. The sloped configuration of the bottom wall of the tub 14 directs that mixture into the sump 30. The recirculation pump 60 is fluidly coupled downstream of the downstream surface of the rotat- 45 ing filter 74 and if the recirculation pump 60 is shut off then any liquid and soils within the filter chamber will settle in the filter chamber 64 where the liquid and any soils may be subsequently drained by the drain pump assembly 32.

FIG. 6 illustrates more clearly the shroud 76, first diverter 50 78, the second diverter 84, and the flow of the liquid along the recirculation flow path. Multiple arrows 144 illustrate the travel of liquid along the recirculation flow path as it passes through the rotating filter 74 from the upstream surface defined by the first surface 120 to a downstream surface 55 defined by the second surface 122. The rotation of the filter 74, which is illustrated in the clockwise direction, causes the liquid and soils therein to rotate in the same direction within the filter chamber 64. The recirculation flow path is thus illustrated as circumscribing at least a portion of the shroud 76 60 and as entering through the access openings 114. In this manner, the multiple access openings 114 may be thought of as facing downstream to the recirculation flow path. It is possible that some of the liquid in the recirculation flow path may make one or more complete trips around the shroud 76 prior to entering the access openings 114. The number of trips is somewhat dependent upon the suction provided by the

8

recirculation pump 60 and the rotation of the filter 74. As may be seen, a small portion of the liquid may be drawn around the shroud 76 and into the access opening 114 in a direction opposite that of the rotation of the filter 74. The shape of the shroud 76, the first diverter 78, and the second diverter 84 as well as the suction from the recirculation pump 60 may result in a portion of the liquid turning in this manner, which helps discourage foreign objects from entering the access opening 114 as they are less able to make the same turn around the shroud 76 and into the access opening 114.

Several of the zones created in the filter chamber 64 during operation have also been illustrated and include: a first shear force zone 146 and a second shear force zone 148. These zones impact the travel of the liquid along the liquid recirculation flow path as described in detail in the U.S. patent application Ser. No. 13/163,945, filed on Jun. 20, 2011, entitled "Rotating Filter for a Dishwasher," which is incorporated by reference herein in its entirety. It will be understood that the shroud 76 and the first diverter 78 form artificial boundaries spaced from the upstream surface defined by the first surface 120 of the rotating filter 74 such that liquid passing between the shroud 76 and the first diverter 78 and the upstream surface applies a greater shear force on the first surface 120 than liquid in an absence of the shroud 76 and the first diverter 78 and that in this manner the first shear force zone 146 is formed. Similarly, the second diverter 84 forms a second artificial boundary spaced from the downstream surface defined by the second surface 122 of the rotating filter 74 and creates the second shear force zone 148. The first and second shear force zones 146 and 148 aid in removing foreign soil from the rotating filter 74. Additional zones may be formed by the shroud 76, the first diverter 78, and the second diverter 84 as described in detail in the U.S. patent application Ser. No. 13/163,945. It is contemplated that the relative orientation between the first diverter 78 and the second diverter **84** may be changed to create variations in the zones formed.

In another embodiment, at least a first portion of the first diverter 78 may be in a floating relative relationship with the rotating filter 74. In such an embodiment the first diverter 78 may still include the first diverter bearing surface 118 and the rotating filter 74 may still include a filter bearing surface 124, with the first diverter bearing surface 118 and the filter bearing surface 124 being in an abutting relationship to define the floating relative relationship. In yet another embodiment, a biasing device may be utilized to bias the first diverter 78 into position relative to the rotating filter 74 to form the gap 128. For example, a biasing device in the form of a spring may be used to space the first diverter 78 from the rotating filter 74. The biasing device may also allow the first diverter **78** to be moveable relative to at least a portion of the rotating filter 74 to allow the size of the gap 128 to vary with a position of the first diverter 78 relative to the surface of the rotating filter 74. Such embodiments would operate similarly to the embodiment described above and may reduce damage to the rotating filter 74 caused by soil particles between the first diverter 78 and the rotating filter 74.

The embodiments described above provide for a variety of benefits including enhanced filtration such that soil is filtered from the liquid and not re-deposited on dishes and allow for cleaning of the rotating filter throughout the life of the dishwasher and this maximizes the performance of the dishwasher. Thus, such embodiments require less user maintenance than required by typical dishwashers.

While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible

without departing from the spirit of the invention which is

defined in the appended claims. For example, the rotating

filter may have first and second filter elements, which may be

by a gap. The filter elements may be structurally different

from each other, may be made of different materials, and may

have different properties attributable to them. For example,

the first filter element may be more resistant to foreign object

that the rotating filter may also include a non-perforated por-

tion. The non-perforated portion may encircle the rotating

filter and may act as a strengthening rib. The non-perforated

portion may be for any given surface area and may provide the

rotating filter with greater strength, especially hoop strength.

It is also contemplated that the plurality of openings of the

screen may be arranged to leave non-perforated bands encir-

cling the screen with the non-perforated bands functioning as

strengthening ribs. Further, it will be understood that any

damage than the second filter element. It is also contemplated 10

affixed to each other or may be spaced apart from each other 5

3. The dishwasher of claim 2 wherein the rotating filter comprises a frame, with at least a part of the frame forming the filter bearing surface.

4. The dishwasher of claim 2 wherein the first diverter further comprises a second portion in a fixed relative relationship with the rotating filter.

5. The dishwasher of claim 4 wherein the rotating filter further comprises a stationary shaft and the second portion of the first diverter is mounted to the stationary shaft.

6. The dishwasher of claim 5, further comprising a biasing element provided on the stationary shaft and biasing the second portion of the first diverter toward a first end of the rotating filter to maintain the first diverter and the rotating filter in a fixed relative position.

7. The dishwasher of claim 6 wherein the pump comprises an impeller operably coupled to the rotating filter to effect the rotation of the rotating filter, with the first portion of the first diverter being proximate the impeller and the second portion of the first diverter being distal the impeller.

8. The dishwasher of claim 7 wherein the rotating filter portion of the described embodiments above may be com- 20 defines a hollow cone having an exterior, defined by one of the upstream and downstream surfaces, and an interior, defined by the other of the upstream and downstream surfaces, and the biasing element biases both of the first diverter and the rotating filter toward the impeller from the fixed relative position.

9. The dishwasher of claim 8, further comprising a second diverter, with the first diverter proximate one of the upstream and downstream surfaces and the second diverter proximate the other of the upstream and downstream surfaces to define a second gap.

10. The dishwasher of claim 9 wherein the second diverter is non-rotatably mounted to the shaft.

11. The dishwasher of claim 9 wherein the rotating filter comprises a hollow body having an exterior, defined by one of the upstream and downstream surfaces, and an interior, 35 defined by the other of the upstream and downstream surfaces, with the first diverter proximate the exterior and the second diverter proximate the interior.

12. The dishwasher of claim 1, further comprising a shroud at least partially enclosing the rotating filter and having an access opening, with the first diverter located within the access opening.

13. The dishwasher of claim 12 wherein the first diverter projects through the access opening.

14. The dishwasher of claim 1, further comprising a biasing device for biasing the first diverter into an axial position relative to the rotating filter.

15. The dishwasher of claim 1 wherein the first portion of the first diverter abuts the first portion of the rotating filter via a filter bearing surface.

What is claimed is:

bined with each other in any manner.

- 1. A dishwasher for treating dishes according to at least one automatic cycle of operation, comprising:
 - a tub at least partially defining a treating chamber for receiving the dishes for treatment;
 - a sprayer proximate to the tub to spray liquid into the treating chamber;
 - a pump fluidly coupled between the treating chamber and 30 the sprayer to define a circulation circuit for circulating the sprayed liquid from the treating chamber to the sprayer;
 - a housing fluidly coupled to the circulation circuit and defining a filter chamber;
 - a rotating filter located within the housing such that the circulated liquid passes through the rotating filter from an upstream surface to a downstream surface as the rotating filter rotates; and
 - a first diverter extending along and positioned away from at $\ ^{40}$ least a portion of at least one of the upstream or downstream surfaces, with at least a first portion of the first diverter abutting a first portion the rotating filter to define a floating relative relationship between the first diverter and the rotating filter and define a gap therebe- 45
- 2. The dishwasher of claim 1 wherein the first portion of the first diverter comprises a first diverter bearing surface and the first portion of the rotating filter comprises a filter bearing surface.

10